Fluorescence Rejection in Resonance Raman Spectroscopy Using a Picosecond-Gated Intensified Charge-Coupled Device Camera

Author:

Efremov Evtim V.1,Buijs Joost B.1,Gooijer Cees1,Ariese Freek1

Affiliation:

1. Department of Analytical Chemistry and Applied Spectroscopy, Laser Centre Vrije Universiteit Amsterdam, the Netherlands

Abstract

A Raman instrument was assembled and tested that rejects typically 98–99% of background fluorescence. Use is made of short (picosecond) laser pulses and time-gated detection in order to record the Raman signals during the pulse while blocking most of the fluorescence. Our approach uses an ultrafast-gated intensified charge-coupled device (ICCD) camera as a simple and straightforward alternative to ps Kerr gating. The fluorescence rejection efficiency depends mainly on the fluorescence lifetime and on the closing speed of the gate (which is about 80 ps in our setup). A formula to calculate this rejection factor is presented. The gated intensifier can be operated at 80 MHz, so high repetition rates and low pulse energies can be used, thus minimizing photodegradation. For excitation we use a frequency-tripled or -doubled Ti: sapphire laser with a pulse width of 3 ps; it should not be shorter in view of the required spectral resolution. Other critical aspects tested include intensifier efficiency as a function of gate width, uniformity of the gate pulse across the spectrum, and spectral resolution in comparison with ungated detection. The total instrumental resolution is 7 cm−1 in the blue and 15 cm−1 in the ultraviolet (UV) region. The setup allows one to use resonance Raman spectroscopy (RRS) for extra sensitivity and selectivity, even in the case of strong background fluorescence. Excitation wavelengths in the visible or UV range no longer have to be avoided. The effectiveness of this setup is demonstrated on a test system: pyrene in the presence of toluene fluorescence (λexc = 257 nm). Furthermore, good time-gated RRS spectra are shown for a strongly fluorescent flavoprotein (λexc = 405 nm). Advantages and disadvantages of this approach for RRS are discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3