Comparison between Two Detection Systems for Fiber-Optic Chemical Sensor Applications

Author:

Yuan Shigui1,DeGrandpre Michael1

Affiliation:

1. Department of Chemistry, The University of Montana, 32 Campus Dr., Missoula, Montana 59812

Abstract

Two optical detection system designs are compared for fiber-optic chemical sensor applications. A single grating spectrograph with fiberoptic input and photodiodes at three different wavelengths is compared to 1 × 3 fiber-optic splitters and photodiode detectors with integrated interference filters. The splitters are used to direct the optical power to the filter photodiodes. Three types of 1 × 3 commercially available splitters were tested: a 400 μm fused glass fiber-optic coupler, a 1000 μm fused plastic fiber-optic coupler, and a 1000 μm glass fiber-optic bundle. This study finds that the fiber-splitter-based detection systems have similar stray light, signal-to-noise ratio, and long-term absorbance stability compared to the spectrograph detection system with a modest improvement in spectral resolution (from ∼12 nm to ∼6 nm). It is also much smaller in size and lower in cost. Applications of the two systems in a colorimetric CO2 partial pressure sensor are compared and similar accuracy and precision are achieved.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3