Improved Algorithm for Quantitative Analyses of Infrared Spectra of Multicomponent Gas Mixtures with Unknown Compositions

Author:

Gianella Michele1,Sigrist Markus W.1

Affiliation:

1. ETH Zurich, Institute for Quantum Electronics, Laser Spectroscopy and Sensing Lab, Schafmattstrasse 16, 8093 Zurich, Switzerland

Abstract

We present a major improvement of an algorithm based on a spectral library search for the quantitative analysis of multicomponent gas samples with unknown compositions. A quantitative spectral database of infrared spectra is used as a training set to compute regression coefficients. Concentrations are computed in the principal component space via principal component regression (PCR). In addition to previous algorithms, we introduce a rating for each candidate substance depending on the concentration found with PCR and a filter that removes candidates that are predicted with negative concentrations if their rating is below a certain threshold. Negative concentrations arise when the measured spectrum contains components that are not contained in the database. The PCR is recomputed until all candidates have a rating above the threshold. Then an adaptive filter “subtracts” the substance with the highest rating from both the measured spectrum and the library and appends it to a hit list. The iteration of this procedure directly produces a list of substances in order of descending importance (i.e., contribution to the measured absorbance) with their corresponding concentrations. The algorithm is tested on spectra of multicomponent surgical smoke samples. The four main components (water, methane, ethane, and ethene) are identified correctly (within the top 5 of the hit list) for an appropriate choice of the rating threshold. The algorithm describes the composition of the smoke sample correctly despite the presence of features in the spectrum that cannot be explained by the spectrum of any single substance present in the database.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3