Determination of the Percentage of Homopolymer Component in Ziegler/Natta Catalyst Linear Low-Density Polyethylene Resins Using High-Temperature Cell Fourier Transform Infrared and Partial Least Squares Quantitative Analysis Technique

Author:

Cossar Marlee1,Teh Joo1,Kivisto Annikki1,Mackenzie Jason1

Affiliation:

1. NOVA Chemicals Research and Technology Centre, 2928-16th Street N.E., Calgary, Alberta, Canada T2E 7K7

Abstract

A new method for the determination of the percentage of homopolymer component, using high-temperature cell Fourier transform infrared (FT-IR) by partial least squares (PLS) quantitative analysis technique, was developed and applied to Ziegler Natta linear low-density polyethylene (LLDPE). The method is based on the IR spectrum changes between the 730 cm−1 band and 720 cm−1 band at the temperature of 110 °C, which is near the melting point of the polyethylene. The HD% (the percentage of high-density component, i.e., the percentage of homopolymer component) results obtained by CTREF (CRYSTAF in TREF mode) technique are used as the input data together with the respective FT-IR spectra for PLS analyses to establish a calibration curve. The PLS quality is characterized by a correlation coefficient of 0.997 (cross-validation) using four factors and a root mean square error of calibration (RMSEC) of 0.772. The HD% of the unknown can then be predicted by the PLS software from the unknown FT-IR spectrum. A control resin was tested seven times by CTREF and FT-IR. The HD% of the control resin was 28.59 ± 0.88% by CTREF and 29.05 ± 2.37% by FT-IR. It was found that the method was applicable for the same comonomer type of LLDPE within a melt index range and density.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3