Performance of Fiber-Optic Raman Probes for Analysis of Gas Mixtures in Enclosures

Author:

Berg John M.1,Rau Karen C.1,Veirs D. Kirk1,Worl Laura A.1,McFarlan James T.1,Hill Dallas D.1

Affiliation:

1. Nuclear Materials Technology and Engineering Sciences and Applications Divisions, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Abstract

The feasibility of using fiber-optic Raman probes to identify and quantify gases in enclosures is investigated by measuring and comparing detection thresholds using several probe and enclosure designs. Unfiltered, non-imaging, fiber-optic probes are shown to achieve lower detection thresholds than a filtered, imaging, fiberoptic probe, provided that light scattering within the sample enclosure is minimized and provided that a window is not used between the probe and the analyte gas. Achievable thresholds for hydrogen, oxygen, nitrogen, carbon monoxide, and methane in gas mixtures are demonstrated to be below 1 kPa with ten seconds signal acquisition and 0.1 kPa with twenty minutes signal acquisition with the use of 0.4 W of 532-nm excitation. Ambient carbon dioxide in air (.03 kPa) is shown to be detectable in a twenty minute acquisition, and ambient water vapor is well above the detection threshold. Background signals generated within the optical fibers remain the principal factors limiting detection thresholds. Factors affecting the magnitudes of these signals reaching the detector are investigated and discussed. A flat piece of light-absorbing colored glass tilted to direct reflected light away from the fiber-optic probe performs well as a beam stop to reduce background signal in a simple, cylindrical sample enclosure.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3