Framework for Multivariate Selectivity Analysis, Part I: Theoretical and Practical Merits

Author:

Brown Christopher D.1,Ridder Trent D.1

Affiliation:

1. InLight Solutions, 800 Bradbury SE, Albuquerque, New Mexico 87106

Abstract

A number of definitions of multivariate selectivity have been proposed in the literature. Arguably, the one that enjoys the greatest chemometric attention has been the net analyte signal (NAS) based definitions of Lorber and Zinn. Recent works have suggested that similar inference can be made for inverse least-squares calibration methods (e.g., principal components regression). However, the properties of inverse calibration methods are markedly different than classical methods, so in many practical cases involving inverse models classically derived figures of merit cannot be transparently interpreted. In Part I of this work, we discuss a selectivity framework that is theoretically consistent regardless of the calibration method. Importantly, it is also experimentally measurable, either through controlled selectivity experiments, or through analysis on opportunistically acquired sample measurements. It is statistically advantageous to use the former if such control is achievable. Selectivity is defined to be a function of the change in predicted analyte concentration that will result from a change in the concentration of an interferant, an approach consistent with traditional definitions of analytical selectivity and National Committee for Clinical Laboratory Standards recommendations for interference testing. Unlike the NAS-based definition of selectivity, the definition discussed herein is relevant to only a particular analyte–interferant pair. The theoretical and experimental aspects of this approach are illustrated with simulated data herein and in Part II of this paper, which investigates several experimental near-infrared data sets.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3