Nanoliter Serum Sample Analysis by Mid-Infrared Spectroscopy for Minimally Invasive Blood-Glucose Monitoring

Author:

Diessel Edgar1,Kamphaus Peter1,Grothe Klaus1,Kurte Roland1,Damm Uwe1,Heise H. Michael1

Affiliation:

1. Bayer Technology Services, Biophysics Competence Center, D-51368 Leverkusen, Germany (E.D., P.K., K.G.); and ISAS—Institute for Analytical Sciences at the University of Dortmund, Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany (R.K., U.D., H.M.H.)

Abstract

The aim of this study was to demonstrate that mid-infrared spectroscopy is able to quantify glucose in a serum matrix with sample volumes well below 1 μL. For this, we applied mid-infrared attenuated total reflectance (ATR) or transmission-based spectroscopic methods to glucose quantification in microsamples of dry-film sera, either undiluted or diluted 10 times in distilled water. The sample series spanned physiological glucose concentrations between 50 and 600 mg/dL and volumes of 80, 8, and 1 nL. Calibration was carried out using multivariate partial least-squares (PLS) modeling with spectral data between 1180 and 940 cm−1. Best performance was achieved in the ATR experiments. For raw ATR spectra, the optimum standard error of prediction (SEP) of 13.3 mg/dL was obtained for the 8 nL sample series with subsequent 10-fold dilution. With respect to the coefficient of variation of the glucose assay, CVpred, we obtained a value of 3% for the 80 nL volume samples with spectral preprocessing using matrix protein absorption bands as an internal standard, 4% for the 8 nL samples, and 6% for the 1 nL samples with raw data. Spectral standardization resulted in significant improvement, especially for the 80 nL volume sample series. By contrast, the accuracy of the glucose assay for the 1 nL sample volume series could not be improved either by internal standardization or by considering the dry film areas for normalization, which we attribute to varying topographies of the dry films.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3