Rapid Classification of Simulated Street Drug Mixtures Using Raman Spectroscopy and Principal Component Analysis

Author:

Noonan Kathryn Y.1,Tonge Lindsey A.1,Fenton Owen S.1,Damiano David B.1,Frederick Kimberley A.1

Affiliation:

1. Department of Chemistry, College of the Holy Cross, Worcester, Massachusetts 01610 (K.Y.N., L.A.T., O.S.F.); Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, Massachusetts 01610 (D.B.D.); and Department of Chemistry, Skidmore College, Saratoga Springs, New York 12866 (K.A.F.)

Abstract

The ability to accurately and noninvasively analyze illicit drugs is important for criminal investigations and prosecution. Current methods involve significant sample pretreatment and most are destructive. The goal of this work is to develop a method based on Raman spectroscopy to classify simulated street drug mixtures composed of one drug component and up to three cutting agents including those routinely found in confiscated illicit street drug mixtures. Spectra were collected on both a homebuilt instrument using a HeNe laser and on a handheld commercial instrument with a 785 nm light source. Mixtures were prepared with drug concentrations ranging from 10 to 100 percent. Optimal preprocessing for the data set included truncating, Savitzky–Golay smoothing, normalization, differentiating, and mean centering. Using principal component analysis (PCA), it was possible to resolve the spectral differences between benzocaine, lidocaine, isoxsuprine, and norephedrine and correctly classify them 100 percent of the time.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3