Application of Partial Least-Squares Regression to Near-Infrared Reflectance Spectroscopic Determination of Shive Content in Flax

Author:

Sohn Miryeong1,Barton Franklin E.1,Morrison Wiley H.1,Archibald Douglas D.1

Affiliation:

1. USDA-Agricultural Research Service, Richard B. Russell Agricultural Research Center, P.O. Box 5677, Athens, Georgia 30605 (M.S., F.E.B., W.H.M.); and Department of Crop and Soil Science, Pennsylvania State University, University Park, Pennsylvania 16802 (D.D.A.)

Abstract

Shive, the nonfiberous core portion of the stem, in flax fiber after retting is related to fiber quality. The objective of this study is to develop a standard calibration model for determining shive content in retted flax by using near-infrared reflectance spectroscopy. Calibration samples were prepared by manually mixing pure, ground shive and pure, ground fiber from flax retted by three different methods (water, dew, and enzyme retting) to provide a wide range of shive content from 0 to 100%. Partial least-squares (PLS) regression was used to generate a calibration model, and spectral data were processed using various pretreatments such as a multiplicative scatter correction (MSC), normalization, derivatives, and Martens' Uncertainty option to improve the calibration model. The calibration model developed with a single sample set resulted in a standard error of 1.8% with one factor. The best algorithm was produced from first-derivative processing of the spectral data. MSC was not effective processing for this model. However, a big bias was observed when independent sample sets were applied to this calibration model to predict shive content in flax fiber. The calibration model developed using a combination sample set showed a slightly higher standard error and number of factors compared to the model for a single sample set, but this model was sufficiently accurate to apply to each sample set. The best algorithm for the combination sample set was generated from second derivatives followed by MSC processing of spectral data and from Martens' Uncertainty option; it resulted in a standard error of 2.3% with 2 factors. The value of the digital second derivative centered at 1674 nm for these spectral data was highly correlated to shive content of flax and could form the basis for a simple, low-cost sensor for the shive or fiber content in retted flax.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3