Moisture Quenching of Solid-Matrix Phosphorescence on Hydrophilic and Partially Hydrophobic Filter Papers

Author:

Ackerman Amanda H.1,Hurtubise Robert J.1

Affiliation:

1. Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071

Abstract

A detailed investigation was undertaken to determine the important parameters that were responsible for the solid-matrix phosphorescence (SMP) moisture quenching of phosphors adsorbed in Whatman No. 1 (hydrophilic) and Whatman 1PS (partially hydrophobic) papers. The three phosphors used were phenanthrene, perdeuterated phenanthrene, and benzo[ e]pyrene. Both SMP lifetime and SMP intensity data were obtained over a wide range of adsorbed moisture. In addition, moisture isotherms were obtained for the No. 1 and 1PS papers. The SMP lifetimes of phenanthrene and benzo[ e]pyrene were independent of the amount of adsorbed moisture on both the No. 1 and 1PS papers. However, the SMP lifetimes of perdeuterated phenanthrene on No. 1 and 1PS papers were dependent on the extent of the adsorbed moisture. The changes in the SMP intensities as a function of adsorbed moisture for phenanthrene, benzo[ e]pyrene, and perdeuterated phenanthrene on No. 1 paper could be modeled by a simple exponential function with phenanthrene and benzo[ e]pyrene giving better correlations compared to perdeuterated phenanthrene. The change in the modulus of filter paper samples with moisture adsorption was a major factor in causing the SMP intensity to decrease. The decrease in the SMP intensities with moisture adsorption for the three phosphors adsorbed on 1PS paper did not correlate with the simple Stern–Volmer model and several other quenching models discussed in the literature. Thus, these data were fit to a relatively simple empirical equation. The results showed that the SMP quenching phenomena for the three phosphors on No. 1 paper and on 1PS paper were considerably different.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3