Temperature Measurement of Liquids by Differential Absorption of Two Diode Lasers: Application of Contactless Optical Detection in Isotachophoresis

Author:

Krivtzun V.1,Graß B.1,Hergenröder R.1,Bolshov M.1,Niemax K.1,Zybin A.1

Affiliation:

1. Institute for Spectrochemistry and Applied Spectroscopy, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany (B.G., R.H., M.B., K.N., A.Z.); and Institute of Spectroscopy, Russian Academy of Sciences, Troitzk, Moscow reg. 142092, Russian Federation (V.K.)

Abstract

A modification of the wavelength modulation diode laser (DL) absorption technique for detection of broad-band molecular absorption lines is proposed. The method based on the detection of differential absorption of two narrow-band DLs at specially selected wavelengths within the molecular absorption band enables the measurement of the temperature changes of a sample. These cause shifts and deformations of the absorption band. The potentials and limitations of the proposed technique are shown using contactless detection of the temperature of isotachophoretic zones on a polymer microchip as an example. A variation in the temperature of an ITP-zone provides a difference in the absorption of two diode laser beams with their wavelengths tuned to the opposite slopes of a broad molecular absorption band of water. The 970 nm absorption band of water was used in this work. The minimum detectable temperature increment of about 0.4 °C is realized in a capillary filled with a typical ITP buffer. The drifts and fluctuations of the base line increase 10–20 fold if a buffer front propagates along the capillary. The propagation of the temperature front was numerically simulated using the tabulated values for heat capacity and electric and thermal conductivity of ITP-buffers and plastic material. The simulated values of temperature variations caused by on/off switching of the capillary current fit very well the experimentally measured ones. It is expected that the sensitivity and temporal resolution of the technique can be improved by modification of the microchip and by use of the strongest absorption band of water at 1.44 μm.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3