Affiliation:
1. Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294
Abstract
The relative merits of five laser excitation schemes have been evaluated for photoionization spectrometry (PIS) measurements of NO in air. All five schemes utilize wavelengths near 215 nm, which correspond to excitation of rovibronic transitions in the A 2Σ+–X 2πi (1,0) bands of NO. Photoionization of the excited NO molecules is accomplished by using wavelengths ranging from 215 to 1064 nm. Excitation spectra of the five PIS schemes reveal a significant enhancement when 355 nm radiation is used for photoionization. The enhancement is hypothesized to be related to a resonance or near-resonance ionization process for selected lines in the A 2Σ+–X 2π1/2 band [specifically the R11 + Q21 ( J″ = 8.5–12.5) lines and the P21 + Q11 ( J” 9.5–10.5) lines] and the A 2Σ+–X 2π3/2 band [specifically the R12 + Q22 ( J” 8.5–12.5) lines and the P22 + Q12 ( J” = 9.5–10.5) lines] of NO. Comparison measurements using all five schemes demonstrate that the highest sensitivity and highest signal-to-noise ratios are observed by using the 215 nm + 355 nm scheme, for which a limit of detection of 80 parts per trillion by volume for NO in air has been achieved.
Subject
Spectroscopy,Instrumentation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献