Investigation of the Christiansen Effect in the Mid-Infrared Region for Airborne Particles

Author:

Pollard Matthew J.1,Griffiths Peter R.1,Nishikida Koichi1

Affiliation:

1. Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343 (M.J.P., P.R.G.); and Thermo Fisher Scientific, 5225 Verona Road, Madison, Wisconsin 53711-4395 (K.N.)

Abstract

During measurements of open-path Fourier transform infrared spectra, airborne dust may be present in the infrared beam. We have investigated the feasibility of identifying and quantifying the airborne particulate matter from spectra measured in this way. Although the results showed that analysis of the particulate matter was not able to be performed from these spectra, insight into the size and wavelength dependence of the Christiansen effect at wavelengths where the particles absorb strongly was obtained. Airborne particles larger than or equal to the wavelength of the incident radiation give rise to asymmetrical features in the spectrum caused by the Christiansen effect. However, the transmittance at wavelengths where the refractive index of the particles equals that of the atmosphere never reaches 1.0 because of absorption by the particles. As the particle size becomes much smaller than the wavelength of the incident radiation, the Christiansen effect becomes less pronounced and eventually is not exhibited.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3