On-Line Characterization of YBCO Coated Conductors Using Raman Spectroscopy Methods

Author:

Maroni V. A.1,Reeves J. L.1,Schwab G.1

Affiliation:

1. Argonne National Laboratory, Argonne, Illinois 60439 (V.A.M.); and SuperPower, Inc., Schenectady, New York 12304 (J.L.R., G.S.)

Abstract

The use of Raman spectroscopy for on-line monitoring of the production of superconducting YBa2Cu3O6+x (YBCO) thin films on long-length metal tapes coated with textured buffer layers is reported for the first time. A methodology is described for obtaining Raman spectra of YBCO on moving tape exiting a metal-organic-chemical-vapor-deposition (MOCVD) enclosure. After baseline correction, the spectra recorded in this way show the expected phonons of the specific YBCO crystal orientation required for high supercurrent transport, as well as phonons of non-superconducting second-phase impurities when present. It is also possible to distinguish YBCO films that are properly textured from films having domains of misoriented YBCO grains. An investigation of the need for focus control on moving tape indicated that focusing of the laser on the surface of the highly reflective YBCO films exiting the MOCVD enclosure tends to produce aberrant photon bursts that swamp the Raman spectrum. These photon bursts are very likely a consequence of optical speckle effects induced by a combination of surface roughness, crystallographic texture, and/or local strain within the small grain microstructure of the YBCO film. Maintaining a slightly out-of-focus condition provides the best signal-to-noise ratio in terms of the obtained Raman spectra. In addition to examining moving tape at the post-MOCVD stage, Raman spectra of the film surface can also be recorded after the oxygen anneal performed to bring the YBCO to the optimum superconducting state. Consideration is given to data processing methods that could be adapted to the on-line Raman spectra to allow the tagging of out-of-specification tape segments and, at a more advanced level, feedback control to the MOCVD process.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3