Infrared Kinetic/Structural Studies of Barrier Reformation in Intact Stratum Corneum following Thermal Perturbation

Author:

Pensack Ryan D.1,Michniak Bozena B.1,Moore David J.1,Mendelsohn Richard1

Affiliation:

1. Department of Chemistry, Newark College of Arts and Sciences, Rutgers-The State University of New Jersey, 73 Warren Street, Newark, New Jersey 07102 (R.D.P., R.M.); Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, 145 Bevier Road, New Brunswick, New Jersey 08854 (B.B.M.); and International Specialty Products, 1361 Alps Road, Wayne, New Jersey 07470 (D. J. M.)

Abstract

Stratum corneum, the outermost layer of the epidermis, constitutes the main barrier to permeability in skin. As such, it has been the target of many approaches for transdermal drug delivery based on methods involving transient modifications of the barrier. An infrared (IR) spectroscopic method has been developed to monitor the kinetics of barrier restoration following an external perturbation. In the current case, temperature perturbation was selected as a convenient means to induce structural changes in the barrier. The method is based on the observation that the ordered lipid phases of the barrier in isolated human stratum corneum exist in part in orthorhombically packed subcells. Such phases display a characteristic splitting of the CH2 rocking vibrations with component frequencies at 720 and 729 cm−1. The latter is reliably diagnostic for orthorhombic phases and is markedly reduced in intensity following a thermal perturbation to 55 °C. The kinetics of barrier recovery following quenching to either 25 °C or 30 °C were monitored by tracking the restoration of the 729 cm−1 band intensity. The kinetics were dominated by exponential growth in the initial stages, followed by linear increases at longer times. The half lives for exponential growth regimes were 52.4 h for the 25 °C quench and 13.8 h for the 30 °C quench. These values are in reasonable accord with those determined with more phenomenological approaches, typically based on restoration of some barrier function. This novel method for monitoring structural reorganization kinetics in intact stratum corneum can readily be extended to evaluate barrier recovery following a variety of treatments used to enhance drug delivery.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3