Synthetic Multivariate Models to Accommodate Unmodeled Interfering Spectral Components during Quantitative Spectral Analyses

Author:

Haaland David M.1

Affiliation:

1. Sandia National Laboratories, Albuquerque, New Mexico 87185-0342

Abstract

The analysis accuracy and precision of any multivariate calibration method will be severely degraded if unmodeled sources of spectral variation are present in the unknown sample spectra. A synthetic method for correcting errors generated by the presence of unmodeled components or other sources of unmodeled spectral variation has been developed. If the spectral shape of the unmodeled spectral component can be obtained and mathematically added in variable amounts to the original calibration spectra, then a new synthetic multivariate calibration model can be generated from the augmented data to accommodate the presence of the unmodeled source of spectral variation. The new method is demonstrated for a case where unmodeled temperature variations are present in the unknown sample spectra of dilute aqueous solutions of urea, creatinine, and NaCl. When constant-temperature partial least-squares (PLS) models are applied to spectra of variable-temperature samples, the standard errors of prediction (SEP) are approximately an order of magnitude higher than those of the original cross-validated SEPs of the constant-temperature PLS models. Synthetic models based upon constant-temperature data augmented with a classical least-squares (CLS) estimate of the spectral effect of temperature obtained from variable-temperature aqueous sample spectra are demonstrated to significantly reduce errors when predicting concentrations from spectra of solutions at variable-temperature. We demonstrate that the prediction precisions approach the original calibration precisions when the new synthetic PLS models are applied to variable-temperature solution spectra. Although spectrometer drift added bias errors to the analyte determinations, a method is demonstrated that can minimize the effect of long-term drift on prediction errors through the measurement and use of spectra obtained from a small subset of samples measured during both calibration and prediction. In addition, sample temperature can be predicted with high accuracy (±0.13 °C) with this new synthetic PLS modeling method without the need to recalibrate using actual variable-temperature sample data. Therefore, the synthetic method eliminates the need for expensive generation of new calibration samples and collection of their spectra. The method is quite general and can be applied by using any known source of spectral variation and used with any multivariate calibration method.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3