Discrimination of Bacteria and Bacteriophages by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy

Author:

Goeller Lindsay J.1,Riley Mark R.1

Affiliation:

1. Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721 (L.J.G.); and Agricultural and Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721 (M.R.R.)

Abstract

Detection of pathogenic organisms in the environment presents several challenges due to the high cost and long times typically required for identification and quantification. Polymerase chain reaction (PCR) based methods are often hindered by the presence of polymerase inhibiting compounds and so direct methods of quantification that do not require enrichment or amplification are being sought. This work presents an analysis of pathogen detection using Raman spectroscopy to identify and quantify microorganisms without drying. Confocal Raman measurements of the bacterium Escherichia coli and of two bacteriophages, MS2 and PRD1, were analyzed for characteristic peaks and to estimate detection limits using traditional Raman and surface-enhanced Raman spectroscopy (SERS). MS2, PRD1, and E. coli produced differentiable Raman spectra with approximate detection limits for PRD1 and E. coli of 109 pfu/mL and 106 cells/mL, respectively. These high detection concentration limits are partly due to the small sampling volume of the confocal system but translate to quantification of as little as 100 bacteriophages to generate a reliable spectral signal. SERS increased signal intensity 103 fold and presented peaks that were visible using 2-second acquisitions; however, peak locations and intensities were variable, as typical with SERS. These results demonstrate that Raman spectroscopy and SERS have potential as a pathogen monitoring platform.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3