Orthogonal Sample Design Scheme for Two-Dimensional Synchronous Spectroscopy and its Application in Probing Intermolecular Interactions

Author:

Qi Jian1,Li Huizhen1,Huang Kun1,Chen Huhe1,Liu Shaoxuan1,Yang Limin1,Zhao Ying1,Zhang Chengfeng1,Li Weihong1,Wu Jinguang1,Xu Duanfu1,Xu Yizhuang1,Noda Isao1

Affiliation:

1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China (J.Q., H.L., K.H., H.C., S.L., L.Y., W.L., J.W., Y.X.); State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China (Y.Z., C.Z., D.X.); and The Procter & Gamble Company, West Chester, Ohio 45069 (I.N.)

Abstract

This paper introduces a new approach to probing intermolecular interactions based on a framework of two-dimensional (2D) synchronous spectroscopy. Mathematical analysis performed on 2D synchronous spectra using variable concentration as an external perturbation shows that the cross-peaks are composed of two parts. The first part reflects intermolecular interactions that manifest in the form of deviation from the Beer–Lambert law. The second part is related simply to the concentration variations of the solutes and is responsible for the generation of interfering cross-peaks not related to the intermolecular interactions in the system. It is the second part that prevents the reliable identification of intermolecular interactions. We propose a way of selecting the concentrations of solutes so that the resultant dynamic concentration vectors of different solutes become orthogonal to one another. Therefore, the contribution of the second part to the cross-peaks can be effectively removed by the dot product of orthogonal vectors. Our new approach has been tested on a simulated chemical system and a real chemical system. The results demonstrate that interfering cross-peaks can be successfully removed from a 2D synchronous spectrum so that the cross-peaks can be used as a reliable tool to characterize or probe intermolecular interactions.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3