Chemical Probing of Single Cancer Cells with Gold Nanoaggregates by Surface-Enhanced Raman Scattering

Author:

Tang Hong-Wu1,Yang Xuebin B.1,Kirkham Jennifer1,Smith D. Alastair1

Affiliation:

1. College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P.R. China (H.-W.T.); Department of Oral Biology, University of Leeds, LS2 9LU, UK (X.B.Y., J.K.); and School of Physics and Astronomy, University of Leeds, LS2 9JT, UK (D.A.S.)

Abstract

By using near-infrared surface-enhanced Raman scattering (SERS) with 60 nm gold nanoparticles (Au-NPs) to probe the chemical composition inside single human osteosarcoma cells we have shown that the SERS intensity may increase by a factor of 3–6 times in different parts of the cells depending on the density of gold nanoaggregates within the probed volume after the cell is dehydrated. The cellular points of low-density gold nanoaggregates exhibit more significant increase of SERS signal levels, the cellular macrochemicals such as nucleic acids show conformational changes, and new components can be probed after the cell is completely dried. A comparative study between viable and apoptotic cells indicates that most of the Au-NPs that enter the living cell reside in the cytoplasm and around the nucleus, whereas glyoxal-induced apoptotic cells show relatively uniform distribution of Au-NPs and, interestingly, the presence of DNA fragments is detected throughout the cell, including the cell surface.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3