Behaviors of the “Raman Spectroscopic Signature of Life” in Single Living Fission Yeast Cells under Different Nutrient, Stress, and Atmospheric Conditions

Author:

Huang Yu-San1,Nakatsuka Takeshi1,Hamaguchi Hiro-O1

Affiliation:

1. Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Time- and space-resolved Raman spectra of mitochondria in single living fission yeast cells have been measured under various nutrient, stress, and atmospheric conditions. A focus is placed on the behavior of the Raman band located at 1602 cm−1, which sensitively reflects the metabolic activity in mitochondria and which has been called by us the “Raman spectroscopic signature of life”. Addition of nutrients increases the intensity of this band by ∼1.5 times, confirming its correlation with the metabolic activity in mitochondria. The spectra of cells cultured under 100% N2, 100% O2, and N2/O2 (VN2:VO2 ≅ 4:1) atmospheres have been measured for both 16O2 and 18O2. Yeast cells have been found to lose their metabolic activity after the culture under 100% N2 and 100% O2 atmospheres. Cells cultured under a N2/16O2 (16O2 = 20%) atmosphere show strong “Raman spectroscopic signature of life”. No 18O isotopic shift has been found for the wavenumber 1602 cm−1, indicating that the origin of this signature is neither O2 nor an O-containing small molecule. Addition of H2O2 causes a quick decrease of the “Raman spectroscopic signature of life”, followed by the cis–trans isomerization in the unsaturated phospholipid chain. The “Raman spectroscopic signature of life” has thus been proved to be a reliable real-time and in vivo indicator for monitoring the metabolic activity in living cells.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3