Affiliation:
1. Department of Advanced Technology, Brookhaven National Laboratory, Upton, New York 11973
Abstract
Experimental results are reported on a mobile, stand-alone, solar-blind ultraviolet (UV) Raman lidar system for the stand-off detection and identification of liquid and solid targets at ranges of hundreds of meters. The lidar is a coaxial system capable of performing range-resolved measurements of gases and aerosols, as well as solids and liquids. The transmitter is a flash lamp pumped 30 Hz Nd:YAG laser with quadrupled output at 266 nm. The receiver subsystem is comprised of a 40 cm Cassegrain telescope, a holographic UV edge filter for suppressing the elastic channel, a 0.46 m Czerny–Turner spectrometer, and a time gated intensified charge-coupled device (CCD) detector. The rejection of elastic light scattering by the edge filter is better than one part in 105, while the transmittance 500 cm−1 to the red of the laser line is greater than 50%. Raman data are shown for selected solids, neat liquids, and mixtures down to the level of 1% volume ratio. On the basis of the strength of the Raman returns, a stand-off detection limit of ∼ 500 g/m2 for liquid spills of common solvents at the range of one half of a kilometer is possible.
Subject
Spectroscopy,Instrumentation
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献