Affiliation:
1. Chemistry Department, University of Virginia, Charlottesville, Virginia 22904 (C.M., S.P.C., J.N.D.); and Chemistry Department, James Madison University, Harrisonburg, Virginia 22807 (B.A.D.)
Abstract
For evaluating exponential luminescence decays, there are a variety of computational rapid integral methods based on the areas of the decay under different binned intervals. Using both Monte Carlo methods and experimental photon counting data, we compare the standard rapid lifetime determination method (SRLD), optimized rapid lifetime determination methods (ORLD), maximum likelihood estimator method (MLE), and the phase plane method (PPM). The different techniques are compared with respect to precision, accuracy, sensitivity to binning range, and the effect of baseline interference. The MLE provides the best overall precision, but requires 10 bins and is sensitive to very small uncorrected baselines. The ORLD provides nearly as good precision using only two bins and is much more immune to uncompensated baselines. The PPM requires more bins than the MLE and has systematic errors, but is largely resistant to baseline issues. Therefore, depending on the data acquisition method and the number of bins that can be readily employed, the ORLD and MLE are the preferred methods for reasonable signal-to-noise ratios.
Subject
Spectroscopy,Instrumentation
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献