A Study of Electric Field Standing Waves on Reflection Microspectroscopy of Polystyrene Particles

Author:

Brooke Heather1,Bronk B. V.1,McCutcheon J. N.1,Morgan S. L.1,Myrick M. L.1

Affiliation:

1. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (H.B., J.N.M., S.L.M., M.L.M.); Air Force Research Lab, 711 HPW/RHPC, WPAFB, Ohio 45433 (B.V.B.); and U.S. Army Edgewood Chemical Biological Center, A.P.G., Maryland 21010-5424 (B.V.B.)

Abstract

We have been investigating the mid-infrared (MIR) reflection spectrum of microparticles on mirrored substrates. Gold-coated porous alumina filters were used as a substrate to layer the particles and provide consistent reflection spectra. Polystyrene spheres with measured diameters of 0.42 μm were studied using Fourier transform infrared (FT-IR) reflection microspectroscopy, and spectra are shown for coverages in the range 0.5–6 monolayers (ML). Results show that absorption has a nonlinear, stairstep-like dependence on particle coverage and a wavelength dependence that can be explained by electric field standing waves (EFSW) caused by the mirrored substrate. The same effect is found to cause progressive weakening of the observed spectra as a function of increasing wavelength in sub-monolayer coverage measurements. Scattering effects in the spectra are consistent with surface scattering at the antinodes of the EFSW. These observations provide explanations for differences seen between optical properties of particles calculated using the specular-reflection method versus those calculated using traditional aerosol methods. A simple multilayer method for estimating particle absorption coefficients is demonstrated that compares well with values reported using ellipsometry for bulk polystyrene. Another simple method based on sub-monolayer coverage spectra provides spectra suitable for classification analysis but is only semi-quantitative at determining absorption coefficients.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3