Raman Chemical Imaging of Microcrystallinity in Silicon Semiconductor Devices

Author:

Schaeberle Michael D.1,Tuschel David D.1,Treado Patrick J.1

Affiliation:

1. National Institutes of Health, Building 5, Room B1-38, Bethesda, Maryland 20892 (M.D.S.); Imaging Research and Advanced Development, Eastman Kodak Company, Rochester, New York 14650-2132 (D.D.T.); and ChemIcon Inc., 7301 Penn Avenue, Pittsburgh, Pennsylvania 15208 (P.J.T.)

Abstract

Silicon integrated circuits are fabricated by the creation of complex layered structures. The complexity of these structures provides many opportunities for impurities, improperly annealed dopants, and stress effects to cause device contamination and failure. Nondestructive metrology techniques that rapidly and noninvasively screen for defects and relate silicon device structure to device performance are of value. We describe the first use of a liquid crystal tunable filter (LCTF) Raman chemical imaging microscope to assess the crystallinity of silicon semiconductor integrated circuits in a rapid and nondestructive manner without the need for sample preparation. The instrument has demonstrated lateral spatial resolving power of better than 250 nm and is equipped with a tunable imaging spectrometer having a spectral bandpass of 7.6 cm−1. The instrument rapidly produces high-definition Raman images where each image pixel contains a high-quality Raman spectrum. When combined with powerful processing strategies, the Raman chemical imaging system has demonstrated spectral resolving power of 0.03 cm−1 in a test silicon semiconductor wafer fabricated by using ion implantation. In addition, we have applied Raman chemical imaging for volumetric Raman imaging by analyzing the surface distribution of polycrystalline thin film structures. The approaches described here for the first time are generally applicable to the nondestructive metrology of silicon and compound semiconductor devices.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications;Modern Raman Spectroscopy;2019-02-27

2. Raman Spectroscopic Imaging Technology and Its Biomedical Applications;Chinese Journal of Lasers;2018

3. Dynamic Raman imaging system with high spatial and temporal resolution;Review of Scientific Instruments;2017-09

4. Raman Spectroscopy: Principles, Bene.ts, and Applications;Methods in Physical Chemistry;2012-04-25

5. Raman Imaging Instrumentation;Raman, Infrared, and Near-Infrared Chemical Imaging;2011-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3