Classification of Select Category A and B Bacteria by Fourier Transform Infrared Spectroscopy

Author:

Samuels Alan C.1,Snyder A. Peter1,Emge Darren K.1,St. Amant Diane1,Minter Jennifer1,Campbell Mark1,Tripathi Ashish1

Affiliation:

1. ECBC, Research and Technology Directorate, Edgewood Area, Aberdeen Proving Ground, Maryland 21010-5424 (A.C.S., A.P.S., D.K.E.); Camber Corporation, Edgewood Area, SFAE-CBD-GN-C, Aberdeen Proving Ground, Maryland 21010-5424 (D.S.A.); Science and Technology Corporation, Edgewood, Maryland 21040 (J.M., M.C.); and Science Applications International Corporation, Research and Technology Directorate, Aberdeen Proving Ground, Maryland 21010-5424

Abstract

Fourier transform infrared (FT-IR) spectroscopy historically is a powerful tool for the taxonomic classification of bacteria by genus, species, and strain when they are grown under carefully controlled conditions. Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FT-IR spectra. We investigated the multivariate statistics classification ability of the FT-IR spectra of viable pathogenic and nonpathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation capability. Viability of the bacteria was confirmed by agar plate growth after the FT-IR experimental procedures were performed. Principal component analysis (PCA) was reduced to maps of two PC vectors in order to distill the FT-IR spectral features into manageable, visual presentations. The PCA results of the strains of BA, FT, Brucella, and Yersinia spectra from conditions of varying growth media and culture time were readily separable in two-dimensional (2D) PC plots. FT spectra were separated from those of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia rhodei, Y. enterocolitica, and Y. pestis species were distinctly separated from the remaining dataset and could also be classified by growth media. Different growth media produced distinct subsets in the FT, BA, and Yersinia spp. regions in the 2D PC plots. Various 2D PC plots provided differential degrees of separation with respect to the four viable bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. This work provided evidence that FT-IR spectroscopy can indeed separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents including details according to the growth conditions and statistical parameters.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3