Development of a Broadband Picosecond Infrared Spectrometer and its Incorporation into an Existing Ultrafast Time-Resolved Resonance Raman, UV/Visible, and Fluorescence Spectroscopic Apparatus

Author:

Towrie Michael1,Grills David C.1,Dyer Joanne1,Weinstein Julia A.1,Matousek Pavel1,Barton Robin1,Bailey Philip D.1,Subramaniam Naresh1,Kwok Wai M.1,Ma Chensheng1,Phillips David1,Parker Anthony W.1,George Michael W.1

Affiliation:

1. Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom (M.T., P.M., R.B., P.D.B., N.S., A.W.P.); School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom (D.C.G., J.D., J.A.W., M.W.G.); and Department of Chemistry, Imperial College, Exhibition Road, London, SW7 2AY, United Kingdom (W.M.K., C.M., D.P.)

Abstract

We have constructed a broadband ultrafast time-resolved infrared (TRIR) spectrometer and incorporated it into our existing time-resolved spectroscopy apparatus, thus creating a single instrument capable of performing the complementary techniques of femto-/picosecond time-resolved resonance Raman (TR3), fluorescence, and UV/visible/infrared transient absorption spectroscopy. The TRIR spectrometer employs broadband (150 fs, ∼150 cm−1 FWHM) mid-infrared probe and reference pulses (generated by difference frequency mixing of near-infrared pulses in type I AgGaS2), which are dispersed over two 64-element linear infrared array detectors (HgCdTe). These are coupled via custom-built data acquisition electronics to a personal computer for data processing. This data acquisition system performs signal handling on a shot-by-shot basis at the 1 kHz repetition rate of the pulsed laser system. The combination of real-time signal processing and the ability to normalize each probe and reference pulse has enabled us to achieve a high sensitivity on the order of ΔOD ∼ 10−4–10−5 with 1 min of acquisition time. We present preliminary picosecond TRIR studies using this spectrometer and also demonstrate how a combination of TRIR and TR3 spectroscopy can provide key information for the full elucidation of a photochemical process.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3