Using Fourier Transform Infrared Spectroscopy to Examine Structure in Bisurea Organogels

Author:

Pierce Aaron M.1,Maslanka Paul J.1,Carr Andrew J.1,McCain Karla S.1

Affiliation:

1. Department of Chemistry, Austin College, 900 N. Grand Ave., Sherman, Texas 75090

Abstract

The structure of two bisurea organogels was examined by Fourier-transform infrared (FT-IR) spectroscopy. Organogels were prepared in benzene at different concentrations of gelator in order to determine the effect of concentration on the assembly of organogelator molecules. This work examined two types of bisurea organogelators, both with dodecyl alkyl tail groups. The two molecules differ only in the length of an alkyl chain separating their two urea groups: 6 carbons in the C6C12 organogelator (1,6-bis(3(3,5-didodecoxybinzyl)-urea-hexane) and 12 carbons in the C12C12 organogelator (1,12-bis(3(3,5-didodecoxybinzyl)-urea-dodecane). The degree of urea hydrogen bonding was determined from the position of the amide II band, and the conformational order of the alkyl chains in the organogelator was determined in the methylene bending region. Both gels showed a general trend of less hydrogen bonding and greater conformational disorder in the alkyl chains as the concentration of organogelator increased; however, the changes were smaller in the C12C12 gels. This decrease in structural order with increasing organogelator concentration is explained by the kinetics of gel formation; more concentrated gels solidify too quickly to assemble perfectly. The observed differences between the two organogelators are caused by the different structures into which these two similar molecules assemble. The C6C12 organogelator only assembles linearly, while the C12C12 organogelator can form sheets through brick-like packing, and these packing motifs were confirmed by scanning electron microscopy.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3