Wavelength Selection for Multivariate Calibration Using Tikhonov Regularization

Author:

Stout Forrest1,Kalivas John H.1,Héberger Károly1

Affiliation:

1. Department of Chemistry, Idaho State University, Pocatello, Idaho 83209 (F.S. and J.H.K.); and Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, H-1525, Budapest, Hungary (K.H.)

Abstract

Prediction of sample properties using spectroscopic data with multivariate calibration is often enhanced by wavelength selection. This paper reports on a built-in wavelength selection method in which the estimated regression vector contains zero to near-zero coefficients for undesirable wavelengths. The method is based on Tikhonov regularization with the model 1-norm (TR1) and is applied to simulated and near-infrared (NIR) spectral data. Models are also formed from wavelength subsets determined by the standard method of stepwise regression (SWR). Harmonious (bias/variance tradeoff) and parsimonious considerations are compared with and without wavelength selection for principal component regression (PCR), ridge regression (RR), partial least squares (PLS), and multiple linear regression (MLR). Results show that TR1 models generally contain large baseline regions of near-zero coefficients, thereby essentially achieving built-in wavelength selection. For example, wavelengths with spectral interferences and/or poor signal-to-noise ratios obtain near zero regression coefficients. Results often improve with TR1 models, compared to full wavelength PCR, RR, and PLS models. The SWR subset results are similar to those for the TR1 models using the NIR data and worse with the simulated spectral situations. In general, wavelength selection improves prediction accuracy at a sacrifice to a potential increase in variance and the parsimony remains nearly equivalent compared to full wavelength models. New insights gained from the reported studies provide useful guidelines on when to use full wavelengths or use wavelength selection methods. Specifically, when a small number of large wavelength effects (good sensitivity and selectivity) exist, subset selection by SWR (with caution) and TR1 do well. With a small to moderate number of large to moderate sized wavelength effects, TR1 is better. Lastly, when a large number of small effects are present, full wavelengths with the methods of PCR, RR, or PLS are best.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A three-stage wavelength selection algorithm for near-infrared spectroscopy calibration;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2025-01

2. A parameter-free framework for calibration enhancement of near-infrared spectroscopy based on correlation constraint;Analytica Chimica Acta;2021-01

3. Transfer of Multivariate Calibration Models;Comprehensive Chemometrics;2020

4. Linear Regression Modeling: Variable Selection;Comprehensive Chemometrics;2020

5. Calibration Methodologies;Comprehensive Chemometrics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3