Characterization of Raman Spectra Measured in Vivo for the Detection of Cervical Dysplasia

Author:

Robichaux-Viehoever Amy1,Kanter Elizabeth1,Shappell Heidi1,Billheimer Dean1,Jones Howard1,Mahadevan-Jansen Anita1

Affiliation:

1. Department of Biomedical Engineering, Station B, Box 351631, Vanderbilt University, Nashville, Tennessee 37235 (A.R.-V., E.K., A.M.-J.); Presbyterian Healthcare System, Plano, Texas 75093 (H.S.); Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37235 (D.B.); and Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, Tennessee 37235 (H.J.)

Abstract

Raman spectroscopy has been shown to have the potential for providing differential diagnosis in the cervix with high sensitivity and specificity in previous studies. The research presented here further evaluates the potential of near-infrared Raman spectroscopy to detect cervical dysplasia in a clinical setting. Using a portable system, Raman spectra were collected from the cervix of 79 patients using clinically feasible integration times (5 seconds on most patients). Multiple Raman measurements were taken from colposcopically normal and abnormal areas prior to the excision of tissue. Data were processed to extract Raman spectra from measured signal, which includes fluorescence and noise. The resulting spectra were correlated with the corresponding histopathologic diagnosis to determine empirical differences between different diagnostic categories. Using histology as the gold standard, logistic regression discrimination algorithms were developed to distinguish between normal ectocervix, squamous metaplasia, and high-grade dysplasia using independent training and validation sets of data. An unbiased estimate of the accuracy of the model indicates that Raman spectroscopy can distinguish between high-grade dysplasia and benign tissue with sensitivity of 89% and specificity of 81%, while colposcopy in expert hands was able to discriminate with a sensitivity and specificity of 87% and 72%.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3