Fourier Transform Infrared Studies of Heterogeneity, Photodegradation, and Lignin/Hemicellulose Ratios within Hardwoods and Softwoods

Author:

Orton Christopher R.1,Parkinson Dilworth Y.1,Evans Philip D.1,Owen Noel L.1

Affiliation:

1. Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602 (C.R.O., N.L.O.); Department of Chemistry, University of California, Berkeley, and Physical and Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (D.Y.P.); and Center for Advanced Wood Processing, University of British Columbia, Vancouver, B.C., Canada (P.D.E.)

Abstract

There is little information available on the variation in lignin content of growth rings in hardwoods. This study examines whether infrared microscopy can detect intra-incremental differences in the chemical composition of three hardwoods ( R. pseudoacacia, P. Americana, and G. triacanthos) and the effect of such differences on the delignification of the hardwoods during weathering. Earlywood has higher lignin content than latewood in R. pseudoacacia and P. americana, but the opposite was found for G. triacanthos. The delignification of the earlywood and latewood during weathering varied for the three species. It was greater in the earlywood of R. pseuoacacia, whereas in P. americana and G. triacanthus it was more pronounced in latewood. Differences in density and lignin content of earlywood and latewood help explain these differences. In addition, a deconvoluting software package was used to determine whether it is possible to estimate the lignin/hemicellulose ratio in softwoods and hardwoods. Results from the 1760–1580 cm−1 region provided data that can be used to estimate the lignin/hemicellulose ratio of softwoods and hardwoods. This information can be obtained far more easily using infrared microscopy than with conventional wet chemical techniques, potentially allowing characterization of greater numbers of species than has hitherto been possible.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3