Remote Analysis of a Mineral Melt by Laser-Induced Plasma Spectroscopy

Author:

Panne U.1,Neuhauser R. E.1,Haisch C.1,Fink H.1,Niessner R.1

Affiliation:

1. Institute of Hydrochemistry, Technical University of Munich, Marchioninistr. 17, D-81377 Munich, Germany

Abstract

The performance of a customized mobile laser-induced plasma spectroscopy (LIPS) system, based on a Nd:YAG laser for plasma ignition and an echelle spectrometer with an intensified charge-coupled device (CCD) camera, was tested during a field campaign for in situ and on-line process analysis of major constituents in a mineral melt of 1600 °C. After an optimization of the instrumental parameters, such as irradiance, gate width, and delay of the integration time relative to the laser pulse, LIPS allowed the on-line identification of all elements relevant for mineral wool production (i.e., Ti, Fe, Mn, Mg, Ca, Si, Na, and Al) directly from the melt in a rather harsh industrial environment. Validation of the LIPS analysis was performed via manual sampling and X-ray fluorescence (XRF) analysis. A reasonable correlation between the LIPS analysis and the reference analysis was obtained considering the experimental constraints; LIPS demonstrated, however, a superior temporal resolution. The observed differences between LIPS and XRF analysis during load changes of the oven are probably due to unknown processes in or on the melt or rheological effects, which were not detected by bulk reference analysis.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3