Light Leakage Effects with Different Sample Holder Geometries in Quantitative Near-Infrared Transmission Spectroscopy of Pharmaceutical Tablets

Author:

Sparén Anders1,Malm Mattias1,Josefson Mats1,Folestad Staffan1,Johansson Jonas1

Affiliation:

1. Analytical Development, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden

Abstract

Transmission geometry is becoming an alternative to the conventional reflectance geometry in near-infrared (NIR) spectroscopy of pharmaceuticals. An advantage of transmission NIR is that it samples a volume whereas reflectance NIR merely samples the surface region of solid preparations. This leads to more representative measurements on complex matrices, such as some types of tablets. However, more attention must be paid to sample presentation with respect to light leakage. An investigation of the effects of the light leakage obtained with different sample holder geometries on content calibrations for transmission NIR on tablets was performed. Two different model samples, a composite and a compact tablet, were measured in sample wells in which the diameters and heights were varied according to a multivariate design. This was done in order to simulate a mismatch between the tablet and the sample well. Partial least-squares (PLS) models were built and used to evaluate the significance of the sample well geometry. Liquid chromatography was used as a reference method. As expected, for both types of tablets it was found that a small mismatch in tablet-to-well diameter deteriorated the repeatability of the NIR spectra, although, unexpectedly, this gave the best predictions and more robust models. In all, this indicates that light leakage should not be minimized at calibration, but included as a factor in the multivariate model that spans the future expected variation in light leakage.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3