Infrared and Raman Spectral Signatures of Aromatic Nitration in Thermoplastic Urethanes

Author:

Flaherty Thomas J.1,Timmons James C.1,Wrobleski Debra A.1,Orler E. Bruce1,Langlois David A.1,Wurden Katherine J.1,Williams Darren L.1

Affiliation:

1. Chemistry Department, Sam Houston State University, Huntsville, Texas 77340 (T.J.F., D.L.W.); Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (J.C.T.); and Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (D.A.W., E.B.O., D.A.L., K.J.W.)

Abstract

The spectral signatures of nitro attack of the aromatic portion of thermoplastic urethanes (TPU) were determined. Eight fragment molecules were synthesized that represent the nitrated and pristine methylenediphenyl section common to many TPUs. Infrared (IR) and Raman (785 nm illumination) spectra were collected and modeled using the B3LYP/6-31G(d)//B3LYP/6-31G(d) model chemistry. Normal mode animations were used to fully assign the vibrational spectra of each fragment. The vibrational assignment was used to develop a diagnostic method for aromatic nitro attack in thermoplastic urethanes. The symmetric NO2 stretch coupled out of phase with the C–NO2 stretch (1330 cm−1) was found to be free from spectral interferences. Spectral reference regions that enable correction for physical differences between samples were determined. The carbonyl stretch at 1700 cm−1 was the best IR reference region, yielding a limit of quantitation (LOQ) of 0.66 ± 0.02 g N/100 g Estane. Secondary IR reference regions were the N–H stretch at 3330 cm−1 or the urethane nitrogen deformation at 1065 cm−1. The reference region in the Raman was a ring stretching mode at 1590 cm−1, giving an LOQ of 0.69 ± 0.02 g N/100 g Estane. Raman spectroscopy displayed a larger calibration sensitivity (slope = 0.110 ± 0.004) than IR spectroscopy (slope = 0.043 ± 0.001) for nitration determination due to the large nitro Raman cross-section. The full spectral assignment of all eight molecules in the infrared and Raman is presented as supplemental material.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3