Affiliation:
1. Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
Abstract
A method has been developed that enables resonance Raman spectra of photolabile species in solution to be recorded under conditions where the level of photoalteration is controlled: a low level enables reactant spectra to be recorded, whereas a high level enables the spectra of short-lived transient species to be recorded in real time using continuous-wave (CW) lasers and standard Raman detection equipment. The design includes a sealed flow system, enabling air-sensitive species to be studied under an inert atmosphere. A simple theoretical model has been developed to aid the interpretation of experimental results, and its applicability is demonstrated. Controlled photoalteration and its theory are demonstrated with 413.1-nm excitation of carbonmonoxymyoglobin (MbCO), which generates deoxymyoglobin (deoxy-Mb) on photolysis, and for which the spectra of both species are well established. The methods have also been applied to two air-sensitive, photolabile transition metal carbonyls using 514.5-nm wavelength excitation: for Cp2Mo2(CO)6 (Cp = η5–C5H5), increasing levels of photoalteration result only in a decrease in the parent band intensities, relative to the solvent bands; for Cp2Fe2(CO)4, increasing levels of photoalteration result in the appearance of additional bands that are assigned to the transient species CpFe(μ–CO)3FeCp, formed following the loss of a CO ligand.
Subject
Spectroscopy,Instrumentation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献