Role of the Micro- and Nanostructure in the Performance of Surface-Enhanced Raman Scattering Substrates Assembled from Gold Nanoparticles

Author:

Kuncicky Daniel M.1,Christesen Steven D.1,Velev Orlin D.1

Affiliation:

1. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (D.M.K., O.D.V.); and Edgewood Chemical Biological Center, U.S. Army RDECOM, Aberdeen Proving Ground-Edgewood Area, Maryland 21010 (S.D.C.)

Abstract

Highly active and stable substrates for surface-enhanced Raman scattering (SERS) can be fabricated by using colloidal crystals to template gold nanoparticles into structured porous films. The structure-dependent performance of these SERS substrates was systematically characterized with cyanide in continuous flow microfluidic chambers. A matrix of experiments was designed to isolate the SERS contributions arising from nano- and microscale porosity, long-range ordering of the micropores, and the thickness of the nanoparticle layer. The SERS results were compared to the substrate structure observed by scanning electron microscopy (SEM) and optical microscopy to correlate substrate structure to SERS performance. The Raman peak intensity was consistently highest for nanoporous substrates with three-dimensionally ordered micropores, and decreases if the micropores are not ordered or not templated. Removing the nanoscale porosity by fusion of the nanoparticles (without removing the large micropores) leads to a drastic plunge in substrate performance. The peak intensity does not strongly correlate to the thickness of the nanoparticle films. The results make possible the efficient controlled fabrication of stable, reproducible, and highly active substrates for SERS based chemical sensors with continuous sampling.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3