Affiliation:
1. Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Abstract
Standard modeling approaches can produce the most likely values of the formation constants of metal–ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are β1 = 3.2 ± 0.5 and β2 = 11.2 ± 1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium.
Subject
Spectroscopy,Instrumentation
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献