Influence of Different Metal Matrices on Manganese Signal Response in Laser Ablation Inductively Coupled Plasma—Mass Spectrometry

Author:

Usero R.1,Coedo A. G.1,Dorado M. T.1,Padilla I.1

Affiliation:

1. Centro Nacional de Investigaciones Metalúrgicas (CSIC), Gregorio del Amo 8, 28040 Madrid, Spain

Abstract

Laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) is applied for the quantitative determination of manganese concentration in metal samples. A set of Certified Reference Materials, with different matrix elements (Fe, Cu, Ni, Co, Al) and with certified Mn values, were analyzed. Absorption and plasma break-down depend on the solid phase; as a result, there are differences in mass ablation rates that influence the Mn signal response. In order to be able to compare Mn signals, the relative element-dependent response of tested metal matrices was determined from the ablation of Fe, Cu, Ni, Co, and Al pure metal targets. Relative sensitivity factors (RSFs), calculated as the ratio of the signal intensity of 59Co, 58Ni, 63Cu, and 27Al to the signal intensity of 56Fe, were: 0.79, 0.71, 0.74, and 0.51, respectively. All the isotope signals were matched to the value that should correspond to the relative abundance of 56Fe (91.75%). These experimentally determined RSFs were applied for compensating the observed differences. For quantitative measurements a set of CRM carbon steel samples (SS-451/1 to SS-460/1), with Fe contents of approximately 98%, was used for calibration. The samples with different matrices were measured using the main matrix element as internal standard; for this purpose, the measured intensity was firstly extrapolated, from their content in the sample, to the value that should correspond to a content of 98% and, after, was corrected with the calculated RSF. The developed quantification approach provides manganese results with deviations of 5–10% from the certified values, with relative standard deviations of 3–8%.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3