Discrimination of Soil-Borne Fungi Using Fourier Transform Infrared Attenuated Total Reflection Spectroscopy

Author:

Linker Raphael1,Tsror(LAHKIM) Leah1

Affiliation:

1. Civil and Environmental Engineering Dept., Division of Environmental, Water and Agricultural Engineering, Technion, Haifa 32000, Israel (R.L.); and Agricultural Research Organization, Dept. of Plant Pathology, Gilat Experimental Station, M.P. Negev, Negev 85250, Israel (L.T.)

Abstract

Fourier transform infrared (FT-IR) attenuated total reflection (ATR) spectroscopy was used to discriminate five commonly encountered soil-borne fungi that cause severe economic damage to agriculture: Colletotrichum, Fusarium, Pythium, Rhizoctonia, and Verticillium. Contrary to previous studies related to microorganism discrimination using FT-IR-ATR spectroscopy, the pathogen samples were not dried on the ATR crystal, which is a time-consuming operation. Rather, after removing some pathogen filaments from the solution using tweezers, these were placed directly on a flat ATR crystal and pressure was applied using a pressure clamp. Following water subtraction, baseline correction, and normalization of the spectra, principal component analysis was used as a data-reduction step and canonical variate analysis was used for discrimination. Discrimination was performed at the genus level and at the strain level for Colletotrichum. For discrimination between the five fungi at the genus level, the success rate for the validation samples ranged from 75% to 89%. For discrimination between the two Colletotrichum strains, the success rate was 78%. Comparison with spectra of similar fungi dried on the ATR crystal showed that both types of spectra were very similar, indicating that drying the samples on the ATR crystal is not required and can be replaced by mathematical post-processing of the spectra. For routine analyses that involve rapid screening of very large amounts of samples, this approach allows for increasing significantly the number of samples that can be analyzed daily.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3