Characterization of Automobile Float Glass with Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry

Author:

Bridge Candice M.1,Powell Joseph1,Steele Katie L.1,Williams Mary1,MacInnis Jean M.1,Sigman Michael E.1

Affiliation:

1. National Center for Forensic Science and Department of Chemistry, University of Central Florida, P.O. Box 162367, Orlando, Florida 32816-2367 (C.M.B., K.L.S., M.W., J.M.M., M.E.S.); and South Carolina State Law Enforcement Department (SLED), 4400 Broad River Road, Columbia, South Carolina 29210 (L.J.P.)

Abstract

A comparative analysis of the discriminating power of laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), each coupled with refractive index (RI) measurements, is presented for a study of 23 samples of automobile float glass. Elemental emission intensity ratios (LIBS) and elemental concentration ratios (LA-ICP-MS) and their associated confidence intervals were calculated for each float glass sample. The ratios and confidence intervals were used to determine the discrimination power of each analytical method. It was possible to discriminate 83% of the glass samples with 99% confidence based on LIBS spectra alone, and 96–99% of the samples could be discriminated based on LIBS spectra taken in conjunction with RI data at the same confidence level. LA-ICP-MS data allowed for 100% discrimination of the samples without the need for RI data. The results provide evidence to support the use of LIBS combined with RI for forensic analysis of float glass in laboratories that do not have access to LA-ICP-MS.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3