Effects of Mild Heating and Acidification on the Molecular Structure of Milk Components as Investigated by Synchronous Front-Face Fluorescence Spectroscopy Coupled with Parallel Factor Analysis

Author:

Boubellouta Tahar1,Dufour Éric1

Affiliation:

1. U.R. “Typicité des Produits Alimentaires”, ENITA de Clermont Ferrand, Clermont Université, BP 35, F-63370 Lempdes, France

Abstract

This paper reports the potential of synchronous front-face fluorescence spectroscopy in the characterization at the molecular level of milk changes during mild heating from 4 to 50 °C and acidification in the pH range of 6.8 to 5.1. Synchronous fluorescence spectra were collected in the 250–550 nm excitation wavelength range using offsets of 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, and 240 nm between excitation and emission monochromators. The potential of parallel factor (PARAFAC) analysis in the decomposition of the whole synchronous fluorescence data set into the contribution of each of the fluorescent compounds present in milk has been investigated for heating and acidification data sets. Models were fitted from 1 to 7 components. Considering the core consistency values, PARAFAC models with three components have been considered. The first three components explained 94.43% and 94.13% of the total variance for heating and acidification data sets, respectively. The loading profiles of the first and second components derived from PARAFAC analysis performed on heating and acidification data sets corresponded quite well with the characteristics of tryptophan and vitamin A fluorescence spectra, respectively. The third component corresponded to the riboflavin fluorescence spectrum. Considering the heating experiment, the profile of the concentration mode for the second component showed large variations according to the temperature, which were assigned to the melting of triglycerides between 4 and 50 °C. For the acidification experiment, drastic changes in the concentration modes of the three components were observed for pH below 5.6, in agreement with structural changes in casein micelles.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3