Affiliation:
1. Institut für Nukleare Entsorgung, Forschungszentrum Karlsruhe GmbH, P.O. Box 3640, D-76021 Karlsruhe, Germany
Abstract
Laser-induced breakdown spectroscopy (LIBS) is presented for the on-line multielement analysis of molten radioactive glass at a simulated vitrification process of high level liquid waste (HLLW). A plasma plume is produced by focusing the third harmonic of a Nd: YAG laser (λ = 355 nm) onto the glass melt surface at 1200 °C, and the plasma emission is guided via optical fiber and is characterized by an echelle spectrometer for the spectral range from 200 to 780 nm with a resolution of ±0.01 nm. Compared to a Czerny–Turner spectrometer, the echelle spectrometer appears distinctively superior for its broad operational spectral range and high resolution. The laser-induced plasma is found as optically thin and locally in thermodynamic equilibrium (LTE) as characterized by measuring the electron density and plasma temperature. The matrix temperature effect on the spectral emission is observed as significant, increasing the emission line intensities with increasing temperature, but differently from element to element. The applicability of LIBS is demonstrated on a laboratory scale with an inactive simulated HLLW glass melt for various analytical characteristics concerned.
Subject
Spectroscopy,Instrumentation
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献