Near-Infrared Raman Spectroscopy for in vivo Detection of Cervical Precancers

Author:

Utzinger Urs1,Heintzelman Douglas L.1,Mahadevan-Jansen Anita1,Malpica Anais1,Follen Michele1,Richards-Kortum Rebecca1

Affiliation:

1. The Biomedical Engineering Program, The University of Texas at Austin, Austin, Texas 78712 (U.U., D.L.H., R.R.-K.); Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee (A.M.-J.); Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (A.M.); and Department of Gynecology Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 and Department of Obstetrics, Gynecology and Reproductive Health Sciences, The...

Abstract

This study evaluates the potential of near-infrared Raman spectroscopy for in vivo detection of squamous dysplasia, a precursor to cervical cancer. A pilot clinical trial was carried out at three clinical sites. Raman spectra were measured from one colposcopically normal and one abnormal area of the cervix. These sites were then biopsied and submitted for routine histologic analysis. Twentyfour evaluable measurements were made in vivo in 13 patients. Cervical tissue Raman spectra contain peaks in the vicinity of 1070, 1180, 1195, 1210, 1245, 1330, 1400, 1454, 1505, 1555, 1656, and 1760 cm−1. The ratio of intensities at 1454 to 1656 cm−1 is greater for squamous dysplasia than all other tissue types, while the ratio of intensities at 1330 to 1454 cm−1 is lower for samples with squamous dysplasia than all other tissue types. A simple algorithm based on these two intensity ratios separates high-grade squamous dysplasia from all others, misclassifying only one sample. Spectra measured in vivo resemble those measured in vitro. Cervical epithelial cells may contribute to tissue spectra at 1330 cm−1, a region associated with DNA. In contrast, epithelial cells probably do not contribute to tissue spectra at 1454 cm−1, a region associated with collagen and phospholipids.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3