Analysis of Heavy Metal Pollution in Soil Using Transversely Excited Atmospheric CO2 Laser-Induced Plasma by Trapping the Soil in Microstructured Holes on Metal Subtargets

Author:

Idris Nasrullah1,Kagawa Kiichiro1,Sakan Fujio1,Tsuyuki Kenichiro1,Miura Satoru1

Affiliation:

1. Department of Physics, Faculty of Education and Regional Studies, University of Fukui, Fukui 910-8507, Japan (N.I., K.K.); Department of Material Sciences, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan (F.S.); and Kajima Technical Research Institute, Kajima Corporation, Tokyo 182-0036, Japan (K.T., S.M.)

Abstract

A unique technique for direct analysis of soil samples utilizing a special advantage of a transversely excited atmospheric (TEA) CO2 laser-induced plasma generated at atmospheric pressure on a metal target has been developed. In this technique, a metal subtarget, such as nickel plate, structured with intentional microholes on its surface, each with dimensions of around 100 μm in diameter and depth, was used to selectively trap small sized soil particles by immersing the metal plate subtarget into the polluted soil sample. The trapped small soil particles on the metal subtarget were irradiated by a TEA CO2 laser (10.6 μm, 1.5 J, 200 ns) at atmospheric pressure under defocused condition with a spot size of 3 mm × 3 mm. This trapping and confining scheme substantially suppresses the blowing off effect; thus, the trapped soil particles can effectively be dissociated and atomized in the microstructured holes. Using this method of a microstructured metal plate subtarget, quantitative analysis was carried out on loam soil samples polluted by Pb. A linear calibration curve was obtained with a detection limit of approximately 50 mg/kg. Preliminary quantitative studies were carried out for a quartz sand sample containing Cr and Hg, resulting in linear calibration curves with detection limits of approximately 25 mg/kg and 10 mg/kg, respectively, at this stage. This technique is promising as a potential field screening tool for soil analysis.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3