Affiliation:
1. Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
Abstract
When a 10–100-mJ single-spike Q-switched Nd laser pulse is focused on a copper sample, the presence of an atmosphere affects the spectra, the crater size, and the amount of sample vaporized. At 760 Torr the crater diameter (90 µ) and amount of sample vaporized (35 ng) remain relatively constant while at 1 Torr they both increase with increasing laser energy. Spatial changes in the spectra occur with changes in ambient pressure. The continuum intensity of the limited region just above the sample surface appears to be a better measure of the energy reaching the sample than does the energy of the laser beam. The experimental results appear to be caused by absorption of a large fraction of the laser energy in an atmospheric plasma. A radiation-supported shock-wave model is evaluated in detail and compared briefly with similar models as possible mechanisms for production of the atmospheric plasma. The analytical chemical implications of the experimental and theoretical results are discussed.
Subject
Spectroscopy,Instrumentation
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献