Simultaneous Determination of Doxycycline and Chlortetracycline in Real Samples by Europium-Sensitized Luminescence

Author:

Pulgarín José Antonio Murillo1,Molina Aurelia Alañón1,Ferreras Fernando Martínez1

Affiliation:

1. Department of Analytical Chemistry and Foods Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain

Abstract

A simple luminescent methodology for the simultaneous determination of doxycycline and chlortetracycline in pharmaceutical preparations and human urine is proposed. Since the native fluorescence of both analytes is negligible, this method takes advantage of the lanthanide-sensitized luminescence, which provides increased sensitivity. Due to the strong overlapping between the luminescence spectra of both europium complexes, the use of luminescence decay curves to resolve mixtures of the analytes is proposed, particularly as these curves are more selective. A factorial design, with three levels per factor, coupled to a central composite design was selected to obtain a calibration matrix of 13 standards plus one blank sample, which were processed with a partial least-squares analysis. In order to assess the effectiveness of the proposed method, a prediction set of 10 synthetic samples was analyzed, and recovery percentages between 95 and 104% were obtained. Limits of detection, calculated by means of a new criterion, were 3.27 and 1.06 μg L−1 for doxycycline and chlortetracycline, respectively. The method was tested in three different pharmaceutical preparations containing the analytes, with average recovery percentages of 99.4 ± 1.8 for doxycycline and 100.5 ± 2.1 for chlortetracycline. Moreover, a central composite design was also developed to obtain a calibration matrix that made feasible the simultaneous determination of both tetracyclines in human urine samples. In this case, average recovery percentages were 98.0 ± 4.4 and 97.8 ± 4.6 for doxycycline and chlortetracycline, respectively. No extraction method or prior separation of the analytes was needed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal decomposition of tetracycline and chlortetracycline;Journal of Analytical and Applied Pyrolysis;2016-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3