A Small-Window Moving Average-Based Fully Automated Baseline Estimation Method for Raman Spectra

Author:

Schulze H. Georg1,Foist Rod B.12,Okuda Kadek13,Ivanov André2,Turner Robin F. B.123

Affiliation:

1. Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4

2. Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, BC, Canada, V6T 1Z4

3. Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1

Abstract

A fully automated and model-free baseline-correction method for vibrational spectra is presented. It iteratively applies a small, but increasing, moving average window in conjunction with peak stripping to estimate spectral baselines. Peak stripping causes the area stripped from the spectrum to initially increase and then diminish as peak stripping proceeds to completion; a subsequent increase is generally indicative of the commencement of baseline stripping. Consequently, this local minimum is used as a stopping criterion. A backup is provided by a second stopping criterion based on the area under a third-order polynomial fitted to the first derivative of the current estimate of the baseline-free spectrum and also indicates whether baseline is being stripped. When the second stopping criterion is triggered instead of the first one, a proportionally scaled simulated Gaussian baseline is added to the current estimate of the baseline-free spectrum to act as an internal standard to facilitate subsequent processing and termination via the first stopping criterion. The method is conceptually simple, easy to implement, and fully automated. Good and consistent results were obtained on simulated and real Raman spectra, making it suitable for the fully automated baseline correction of large numbers of spectra.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3