Assessing Variability of in Vivo Tissue Raman Spectra

Author:

Pence Isaac J.1,Vargis Elizabeth1,Mahadevan-Jansen Anita1

Affiliation:

1. Department of Biomedical Engineering, Vanderbilt University, Box 351631 Station B, Nashville, TN 37235, USA

Abstract

Raman spectroscopy (RS) has received increasing attention as a potential tool for clinical diagnostics. However, the unknown comparability of multiple tissue RS systems remains a major issue for technique standardization and future multisystem trials. In this study, we evaluated potential factors affecting data collection and interpretation, utilizing the skin as an example tissue. The effects of contact pressure and probe angle were characterized as potential user-induced variability sources. Similarly, instrumentation-induced variability sources of system stability and system-dependent response were also analyzed on skin and a nonvolatile biological tissue analog. Physiologically induced variations were studied on multiple tissue locations and patients. The effect of variability sources on spectral line shape and dispersion was analyzed with analysis-of-variance methods, and a new metric for comparing spectral dispersion was defined. In this study, in vivo measurements were made on multiple sites of skin from five healthy volunteers, with four stand-alone fiber optic probe–based tissue RS systems. System stability and controlled user-induced variables had no effects on obtained spectra. By contrast, instrumentation and anatomical location of measurement were significant sources of variability. These findings establish the comparability of tissue Raman spectra obtained by unique systems. Furthermore, we suggest steps for further procedural and instrumentation standardization prior to broad clinical applications of the technique.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3