Identification of a Mixed Microparticle by Combined Microspectroscopic Techniques: A Real Forensic Case Study in the Biopharmaceutical Industry

Author:

Cao Xiaolin1,Masatani Peter1,Torraca Gianpiero1,Wen Zai-Qing1

Affiliation:

1. Department of Formulation & Analytical Resources, Amgen Inc., Thousand Oaks, California 91320

Abstract

Identification of foreign microparticles in drug products is one of the first steps in evaluating the nature of particle contamination and its consequences for product quality. To characterize various foreign particles, we use spectral database search methods as well as a number of microscopic and microspectroscopic techniques. Here, we report a case study involving the identification and root-cause investigation of a microparticle consisting of four compounds. Foreign microparticles consisting of mixtures pose unique challenges for identification as their spectra are difficult to interpret and general database searches usually return unsatisfactory results. Moreover, sample separation through purification and other manipulations is time consuming and often difficult for these microparticles due to their small sizes and the limited quantities of the components. Here we demonstrate an applicable methodology that combines multiple microscopic and microspectroscopic techniques to identify a heterogeneous microparticle without the need for sample purification or chemical separation. This methodology primarily combines Raman, infrared, and energy dispersive X-ray microspectroscopic techniques to obtain complementary spectral information for the identification of heterogeneous particles. With this methodology, the mixed microparticle investigated in this study was determined to consist of polyisobutylene, hydrated magnesium silicate, titanium dioxide, and silica, likely originating from the vial stopper material.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3