Drop Coating Deposition Raman Spectroscopy of Fluorescein Isothiocyanate Labeled Protein

Author:

Zhang Dongmao1,Vangala Karthikeshwar1,Jiang Dongping1,Zou Sige1,Pechan Tibor1

Affiliation:

1. Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762 (D.Z., K.V., D.J.); National Institute on Aging, National Institute of Health, Baltimore, Maryland 21224 (S.Z.); and Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, Mississippi 39762 (T.P.)

Abstract

Using bovine serum albumin (BSA) as the model protein, normal Raman spectra of fluorescein isothiocyanate (FITC) conjugated protein were systematically studied for the first time using both solution and the drop coating deposition Raman (DCDR) sampling techniques. The FITC-BSA Raman spectra are dominated by the FITC Raman features that are strongly pH dependent. Current DCDR detection sensitivity obtained with a 10:1 FITC-BSA conjugate is 45 fmol in terms of total protein consumption and ∼15 attomol at laser probed volume. Unlike the FITC-BSA solution Raman spectra, where the FITC Raman features are photostable, concurrent FITC fluorescence and Raman photobleaching is observed in the DCDR spectra of FITC-BSA. While the FITC Raman photobleaching follows a single exponential decay function with a time constant independent of the FITC labeling ratio, the fluorescence background photobleaching is much more complicated and it depends strongly on the FITC labeling ratio and sample conditions. Mechanistically, the FITC Raman photobleaching is believed to be due to photochemical reaction of the FITC molecules in the electronically excited state. The FITC fluorescence photobleaching involves both concentration quenching and photochemical quenching, and the latter may involve a photochemical intermediate that is fluorescence inactive but Raman active.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3