What is the Origin of Positional Fluctuation of Spectral Features: True Frequency Shift or Relative Intensity Changes of Two Overlapped Bands?

Author:

Ryu Soo Ryeon1,Noda Isao1,Jung Young Mee1

Affiliation:

1. Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chunchon 200-701, Korea (S.R.R., Y.M.J.); and The Procter & Gamble Company, West Chester, Ohio 45069 (I.N.)

Abstract

We investigated what is really meant by so-called positional or frequency fluctuation of spectral features. To show the difference between the true frequency shift of a single band and apparent peak maximum shift caused by relative intensity changes of overlapped adjacent bands, we analyzed infrared (IR) spectra of the OH stretching band of ethylene glycol during the heating process and the C=O stretching band of acetone in a mixed solvent CHCl3/CCl4 with varying solvent compositions. These spectra are well-known examples of so-called “band shift” phenomena often interpreted as the manifestation of gradual changes in the IR frequency associated with a specific chemical bond under the influence of molecular interactions. Analyses of IR spectra showed that the apparent positional shifts of peak maxima in these systems are actually due to relative contribution changes of two overlapped bands, instead of the gradual frequency shift of a single band induced by the change in the strength of molecular interactions. To further clarify our interpretation of “peak maximum shifts”, we also analyzed simulated spectral datasets, comparing the true band frequency shift and change in the relative contributions of overlapped bands. It was found that principal component analysis (PCA) is a surprisingly sensitive tool to distinguish the two possible mechanisms of peak maximum shift. The new insight revealed by this study should help the interpretation of molecular interactions probed by vibrational spectroscopy.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3